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SUMMARY

In this report we describe the two-dimensional Lagrangian, incompress-

ible Cartesian code, SPLISH, and the changes made to convert it for the study

of flows in and around fuel droplets. The Lagrangian technique used in this

study incorporates a general restructuring triangular mesh, which allows

reconnection of vertices to eliminate grid distortions without adding

numerical diffusion. This technique is accurate at material interfaces even

though the interfaces undergo convolutions and may evolve into multi-

connected surfaces.

New algorithms for surface tension and viscosity have been added to the

basic fluid dynamics code. Surface tension is included as a jump in pressure

across an interface by casting the surface tension forces in the form of a

gradient of a potential. The surface tension algorithm is'benchmarked by

studying the oscillatory behavior of an n - 2 normal mode. The viscosity

algorithm for a general mesh is presented and tested by calculating the

spreading of a viscous shear layer.

We use the code to calculate the internal and external flows of

oscillating and deforming kerosene droplets in an air jet. The surrounding

air jet is initialized to laminar flow about a round kerosene droplet. The

evolution of the droplet and jet are calculated from first principles,

eliminating approximations for effective droplet size, wake effects or

recirculation patterns. Results of the air-kerosene calculations are

illustrated by sequences of frames from a computer generated movie of fluid

particle positions. Both internal and external flows are shown as well as

droplet distortion due to the relative flow. The algorithms needed to extend

these calculations to compressible flows in three dimensions are discussed.

iv
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NUMERICAL SIMULATIONS OF FUEL DROPLET FLOWS
USING A LAGRANGIAN TRIANGULAR MESH

INTRODUCTION

Droplet combustion is a complex transient problem in multiphase flow.

Particularly severe physical and mathematical approximations must be made to

describe the detailed interactions between droplets and the external flow

field in spray combustion models (Williams, 1973; Faeth, 1977,1983). For

example, equivalent spheres are used to approximate droplet deformations, and

empirical expressions are used to account for drag and convection. The

effects of droplet breakup are included by using estimated breakup times and

drop sizes after breakup. Quasi-steady flow approximations are used, and

changes in the flow field due to droplet deformations, wake effects and

droplet distortions due to the flow field are neglected. Finally, in most

models the droplet concentration is assumed to be dilute since little is

known about droplet-droplet or droplet-wake interactions.

The need for these approximations arises directly from the difficulty in

following several physically distinct regions as they interact with the

external flow field, distort and separate or merge. A Lagrangian technique --

is well suited to accurately modelling the transport of these various regions

since it easily and naturally calculates the advection of boundaries.

Because the various regions may severely distort and separate, the

calculational grid must be able to self-consistently adapt to the physical

flow. For these reasons the numerical technique used in this study is

transient hydrodynamic modelling using a Lagrangian mesh.

The calculations are performed using the fully conservative, two-

dimensional Lagrangian finite difference method developed by Fritts and Boris

(1979) specifically to handle multi-phase flow. The method is based on a

Manuscript approved May 30, 1984.



dynamically restructuring Cartesian triangular grid. Triangle sides are

aligned on material interfaces. Since vertex movement is Lagrangian, the

interface sides accurately track the movement of the interface due to

advection. A triangular grid avoids the problems of mesh tangling

encountered in Lagrangian methods using a quadrilateral mesh: individual mesh

points are continually reconnected to account for the migration of fluid

elements in the flow field. Since the number of grid lines meeting at a

vertex is variable, the resolution can be altered non-diffusively where

needed (e.g., around a region of droplet distortion) without affecting the

resolution in other areas of the computation. This is a major step forward

in the computation of droplet flows because the Lagrangian technique allows

for the evolution of the grid to multiply-connected regions. Thus, according

to the flow conditions, droplets can break up and shatter.

Previously, the Lagrangian restructuring triangular grid technique has

been applied to a number of incompressible fluid flow problems including

calculations of nonlinear waves, flows over solid obstacles, Kelvin-Helmholtz

and Rayleigh-Taylor instabilities, Couette flows and Taylor vortex flows

(Fritts, 1976,1976a, Fritts et. al., 1980,1981, Emery et. al., 1981). This

report details the research performed in adapting this technique to the

study of droplet flows and presents calculations of the flow about droplets

from first principles, without resort to models for droplet distortion,

breakup, wake effects, drag or convection. The goals of the project are to

extend this work further to build a comprehensive model for droplet

combustion. This paper is a final report detailing the form of the model and

indicating the results obtained in testing the model on purely hydrodynamic

flows about droplets. Although the effects of combustion are not included in

2!



this report, the model was constructed in such a way as to be able to account

for the additional complexity introduced by combustion processes.

Consider the burning of an isolated heated droplet. The droplet heats up

from its surface inward. Depending on the temperature, fuel, and other

ambient conditions, the droplet may develop substantial internal gradients.

If there is enough convection, recirculating flow develops within the

droplet. As the surface evaporates, the locus of fuel and oxidizer at the

fuel rich limit expands radially outward from the droplet. After the correct

chemical induction time, the mixture may ignite outside this locus. For

burning to continue, heat from the oxidizing gas and products must diffuse in

past the products to continue the evaporation process, and fuel must continue

to diffuse outward toward the flame region. Outside of the flame region the

expanding oxidizing gas may sweep away unburned fuel vapor as well as

combustion products. The Lagrangian technique improves upon phenomenological

models because the advective motion within these several distinct regions are .

accurately calculated without prior assumptions of flow patterns and without

approximating transient flows by steady-state or quasi steady-state flows.

Adjustments of interface positions due to thermal, mass or energy fluxes

across a triangle side may be calculated in a separate step using a

conservative integral technique.

Although the physical processes described above are complex and highly

nonlinear, the description is still idealized. A practical combustor must

establish a relative velocity, Vd, between the fuel droplets and the hot,

oxidizing gas. Unless Vd becomes substantial, surface tension keeps the

droplet essentially spherical as it shrinks due to evaporation. For large

Vd, the droplet distorts and may even shatter. As the droplets move, a

3



boundary layer of vaporized fuel and hot gas develops which creates drag,

decreases Vd and may introduce circulation within the droplet. Recircu-

lation patterns may also develop outside the droplet, influencing both the

boundary layer and external flows. The use of models to account for the

droplet deformations and viscous effects may be avoided by incorporating

algorithms for surface tension and viscosity into the hydrodynamics. This

report describes these algorithms and the benchmarks used to validate their

accuracy.

The shape of the flame surrounding the droplet depends strongly on the

distorted external velocity field. As the Reynolds number increases, the

flame shape around the droplet changes from an envelope to a wake flame. The

site at which energy is released therefore changes, and this in turn

readjusts the external flow field, local evaporation rates and species

concentrations. To this picture must be added the interaction of burning and

evaporating droplets. For close droplet spacings, the fuel-rich limit may

extend around all the individual droplets and the resulting flame strongly

resembles a diffusion flame. Large droplets may still migrate through the

boundaries of the flame, and the combustion characteristics of these droplets _

may strongly affect the concentration of combustion products. Finally, the

physical boundaries of the combustor may be important, altering flow

patterns, temperature gradients, or other important properties of the

system. The Lagrangian technique is well suited to tracking the individual

or merging droplets, the transient flame shape and the flow by irregular

combustor boundaries. Future additions to the technique will allow for

compressible effects, heat release, evaporation and chemical reactions (Oran

and Boris, 1981).

4



An adaptive grid technique can be implemented in two distinct ways:

recomputing the entire grid at each timestep or locally restructuring the

grid to eliminate distortions. Either method requires the storage of

bookkeeping information necessary to compute the finite-difference

templates. However, the mesh distortions which develop during a single

timestep are confined to a fairly small number of triangles, typically at

most 5 percent of the grid, so that the grid restructuring method can be an

order of magnitude more efficient. This remains true even on vector

machines, despite the fact that grid restructuring is inherently a scalar

computation. The computer code used in this report was implemented on a TI-

ASC parallel processor computer using vectorized scans to test for locales

where grid restructuring might be necessary. Scalar routines then performed L,

the actual calculations for grid restructuring in those regions only. The

hydrodynamics routines were all vectorized where possible. Efficient coding

for the ASC was obtained through Fortran-callable assembly language routines

which optimized the scalar fetch and store operations. The main drawback of

the technique is that the resultant programs are machine specific and must be

recoded to run on other machines. Because the programs are not transport-

able, the code is not available for general distribution. Persons interested

in obtaining program information or using the code should contact the authors

directly.

The complete computer code is roughly 13,000 lines long, including

documentation. Execution times on the ASC are typically about .01 seconds

per timestep per grid point, including program diagnostics and output in the

form of two three-color movie films, individual frames on fiche, and fiche

listings. A movie supplement of various film sequences discussed in the text

5



is available for use with this report. Movies are generated through an

optimized package which outputs to a Dicomed film recorder, Tektronix

terminals or Calcomp plotters.

The calculations illustrated in the movie sequences and in the individual

frames in the report all illustrate grids for a single droplet. Because the

boundary conditions for all the calculations are periodic at the sides of the

computational region and reflective at the top and bottom, the calculations

represent an infinite series of droplets. However, most of the calculations

made for this report terminate when the wake of the preceeding droplet

impinges on the droplet following. This permits initial calculations of

nearly isolated droplets. For the 125 micron drop size and the flow speeds

used in the calculations, droplet distortions and possible shattering were

expected, and single droplet simulations of this behavior could be compared

more easily to experimental observations. The gridding routines can generate

initial grids for any desired drop size within an arbitrarily large mesh.

Large differences in resolution are permitted so that the droplet interface

and interior can be well resolved despite larger grid sizes in some regions

of the external flow field. The current code is therefore capable of

simulations of arbitrarily large or small droplets.

-L



LAGRANGIAN HYDRODYNAMICS ON A TRIANGULAR GRID

1. General Approach

In principle, a Lagrangian formulation of the hydrodynamic equations is

particularly attractive for droplet combustion calculations. Each fluid

element is tracked as it evolves through the interaction with its changing

environment and with external forces. Heat release, contaminant reactions

and soot formation can all be represented locally, without resort to global

models and without nonphysical diffusion. Conservation laws are simple to

express since there are no fluxes out of the fluid element boundaries and the

paths of the fluid elements themselves provide flow visualization. However,

in all but the simplest flows the individual fluid elements deform, and these

deformations are a severe hindrance to actually using a Lagrangian method.

In numerical calculations, fluid element distortion appears as

stretching, shearing and eventual tangling of the computational grid.

Although the use of a general-connectivity triangular mesh eliminates

tangling, the accuracy of a calculation may still deteriorate when there are

abrupt local changes in resolution and when the high-order effects of

deformations are not represented. Therefore it is very important to pay

close attention to how well conservation laws are satisfied. For example,

the accuracy of the finite-difference algorithms for a general mesh may not

be sufficient to conserve quantities advected with the fluid elements if some

flux is allowed to flow out of elements to maintain straight lines in the

computational grid. In the following section we show how exact conservation

may be maintained.

o.7



The divergence and curl of the velocity field prescribe the kinetics of

L the field by specifying the local rate of expansion of the fluid, d, and

local vorticity, , by

KV •*v= d ::

Vv - (1) :.:

For incompressible flow, d - 0, and for irrotational flow, - 0.

For incompressible and irrotational flow in two dimensions, the velocity

field is specified by a velocity potential * and stream function 4fr.

- 7K 757 (2)

v -
y

These equations automatically satisfy the conservation of vorticity and mass,

since

V . v -(V x E 0

and (3)

v x = V x o0 0

We would define finite-difference operators for divergence, curl and gradient

which have these identical properties, and this requirement restricts the

placement of variables. In particular, if * and 0 are to be assigned to the

Lagrangian verticies, the velocities v must be specified at the

centroids of triangles or the midpoints of line segments. Therefore the

Lagrangian vertex velocities must be obtained by local averages.

For example, the first of Eqs. 3 will be recast in finite difference

notation. The notation 4(c) is the sum over vertices i around a

central vertex c. In such sums the sequence of vertices is assumed to be

counter-clockwise around the central vertex. The quantity Ai+i/2

8



L
represents the area of the triangle having vertices (c,ii+l). In Figure 1

the area of triangle J is given by

2A - (r3 - r2) x ( - r3) • z, (4)

where z is the direction out of the page. Similarly, for a scalar function f

specified at each vertex and assumed piecewise linear within each triangle,

the vector gradient of f (constant throughout the triangle j and

-. discontinuous at the triangle sides) is given by

z x(r3-r 2) zX(r 1 -r3) + x(r 2-r 1) (5) -.

IV)~f 2A ~ 2 2A ~ 3 2A~

With this placement of variables the dynamics of the flow, as well as the

kinematics, behave properly. *That is,

V . = v • V.= V2  (6)

is a general triangular grid Poisson equation which may be used to solve for

the local pressure. At the same time, the pressures generated by forcing all

local divergences to zero cannot by themselves alter the local vorticities,

due to Eq.(3). In finite-difference form Equation 6 becomes

A ,izx(rc-ri+ I) zx(ri -F) zx(i+-ri) (ri+l-r4) (7)Ac C ic) 2A+ +i+l 2Ai+1/2 c 2Ai+ 2  x z (7)

where Ac is the area of the vertex cell, defined as one third of the

sum of the areas of all triangles including that vertex.

The accuracy of the numerical algorithms is determined by both the local

*" resolution and connectivity of the grid. For the approach used here, the

local connectivity and resolution are both determined in part by the require-

ment that the matrix generated from the Poisson equation, Eq.(7), remains

diagonally dominant. With this restriction, convergence of an iterative

solver for Eq.(7) is assured. The consequences of maintaining diagonal domi-

nance are given below in the discussion of grid restructuring algorithms.

i9o
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Fig. I A section of a triangular mesh including an interface and showing a
vertex cell.
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2. Finite-Difference Algorithms.

In the previous section it was shown that as a result of specifying 4 and _

on vertices, the velocities must be specified at triangle centroids. With

this definition the vorticity C about any vertex is readily calculated. Two

formulations of the basic incompressible hydrodynamics equations are

accessible with these definitions. For a 4#-4 formulation the vorticity C is

advanced at each cell for each timestep and the new stream function 4 is

obtained from a solution of Vx(Vx*)-. By Eq.(3) the divergence of the

velocity field is identically zero. Alternatively, in a P-v formula-

tion the changes in vorticity are zero by construction since VxVPmO. Then

the new pressures are chosen to force the divergence of the velocity field to _

zero. The P-; formulation has been the focus of previous work using

this technique for several reasons. First, the *-4 formulation becomes more

complicated in three dimensions. Second, boundary conditions around bubbles

and cavities are more complicated in the *-C version, particularly for

droplet shattering and coalescence. Third, a self-consistent pressure field .

is usually desired even in the 4-; formulation, requiring an extra solution

step.

The P-v algorithm specifies pressures, velocities and positions

at full timesteps. A split-step algorithm is used to integrate the

velocities forward half a time step, advance the grid a full time step, and

then advance the velocities the remaining half time step.

-1/2 -o 6t 6tvj vj - j(VP)_ - (8)

-1/2 1 -0 -n (9)vi - ( v + vi),

L



• 7 7 T  . . . . . ,.-, -. , -

-n -o -1/2
r r + 1/ (10)i r i  , .•

-1/2 - 0 - -1/2
v Jr (I1)

- 1/2 St gn" (12)

In these equations the subscript i denotes a vertex quantity, while the

subscript J is used for triangle-centered quantities. Therefore the new

vertex velocities appearing in the right-hand side of Eq.(9) are obtained

from the area-weighted new triangle velocities found from Eq.(12) during the ..

previous iteration. That is, Eqs.(8) and (12) advance the velocities

according to the Lagrangian equations of motton: but since the grid is

advanced at the half time step, a vertex velocity at the half time step must ---4

be found from the old and new triangle velocities. This implies an iteration

over Eq.(9) through Eq.(12) to assure that the new velocities are indeed

consistent with those used for the grid advancement in Eq.(10).

Equation (11) is the numerical expression of the change in the triangle

velocities that must occur during the grid advancement if the vorticity is

to remain contant for inviscid, homogeneous flow. This transformation is

apparently a unique, but necessary, addition to Lagrangian methods to assure

that vorticity is conserved. The actual form of the transformation has

changed during this project, so further discussion will be deferred till

later.

12



3. Adjusting and Restructuring the Mesh.

The primary advantage of a restructuring mesh is the flexibility which it

permits for Lagrangian techniques in following long time solutions to

complicated flows. Several types of local mesh adjustment and restructuring

are used to maintain uniformity and accuracy of the discrete mesh

representation. A mesh adjustment is a nonphysical movement or adjustment of

the position of one or more vertices without changing the connectivity of

mesh vertices. These adjustments are designed to regularize the mesh, and

result in the effective transfer of fluid across triangle sides.

Mesh restructuring, on the other hand, does not generally involve

movement of vertices but generally a redefinition of the mesh connectivity.

Simplification of the mesh under restructuring may also involve vertex

addition and deletion, but the positions of all other vertices remain

unchanged. Therefore adjustment and restructuring are somewhat orthogonal

procedures, one leaving vertex positions unchanged and the other leaving the

mesh connectivity unchanged. Since restructuring always involves the changed

position of a triangle side, it can also incorporate the nonphysical flow of

fluid across triangle sides.

Both adjustment and restructuring represent departures from a purely

Lagrangian description and threaten to introduce unwanted numerical diffusion

into the method. To minimize diffusive and other errors, vertices and

triangle sides lying on boundaries, surfaces and interfaces must be left

undisturbed, and mass and momentum must be strictly conserved everywhere

during both restructuring and adjustment. Although there are many schemes

possible for mesh adjustment and restucturing, we have concentrated on a few

13
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"primary" procedures from which more complex procedures may be developed.

Since all conservation laws are satisfied for these simple procedures, all

schemes built up from these primary procedures will also satisfy the same

conservation laws.

A triangular mesh can quickly become distorted through the migration of

vertices in the fluid flow, particularly for shear flows. This situation is

typified by regions of long, narrow triangles bordering more regular ones.

Without restructuring this distorted mesh forces the computation of

derivatives using vertices which are no longer the nearest neighbors, and

quickly leads to inaccuracies, numerical instabilities and nonphysical

behavior. Time-step errors also become severe because of the disparity in

size of triangle sides. For extremely distorted triangles, triangle L

inversion becomes likely. Because of the severity of these problems, grid

restructuring must be imposed continuously to insure the accuracy of the

numerical solution.

On a triangular grid, every nonboundary line uniquely specifies its two

bordering triangles. These triangles form a quadrilateral for which the

included line is one of the two possible diagonals. Figure 2a illustrates a

configuration for which the present diagonal (solid line) should be

reconnected to the opposing diagonal (dashed line). One possible algorithm

always chooses the shorter diagonal unless reconnection produces too large a

disparity in triangle areas. This safeguards against reconnecting the

diagonal of inverted quadrilaterals to produce a negative area triangle, as

shown in Fig. 2b.

The reconnection algorithm could instead be formulated to ensure diagonal

dominance of the triangular grid Poisson equation (Eq.7) as mentioned

14
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a.)

b.)

Fig. 2. Portions of a grid illustrating possible reconnections. In part (a)
the dashed diagonal will be chosen for the shaded quadrilateral rather than
the present, longer, diagonal. In part (b) the diagonal cannot be
reconnected since the alternative diagonal, though shorter, lies outside the
"inverted" quadrilateral.
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previously. Note that the coefficient of the * term in Eq. 7 is

a Ir i -ril
c i(c) 4Ai+1/2

and is always negative. The coefficient ai of the term is

a r -r -r+)(r±+1 -i (r i-frc)(r -ri~ .(4a- A4 (14)

i+1/2 4Ai1-/2

Equation 14 reduces to
a, -!(cot 61+1/2 + cot 6i1/2 ), (15)

where 61+1/2 and 6 1-/2 are the angles in the (i+1/2)th and

(i-1/2)th triangles opposite the line from c to i. If the sum of 61+1/2

and 6 is less than w radians for each i, the matrix is diagonally
1-1/2

dominant and normal iterative procedures for inverting Eq.7 work well. If

for any i

Si 2 + 6 > w radians (16)
1+1/2 1-1/2

then the line from c to i is reconnected to join (i+1) to (i-1). This

procedure therefore chooses the other diagonal of the quadrilateral formed by

the (i+1/2)th and (i-1/2)th triangles. Since the sum of angles in a

quadrilateral is just 2w radians, then the new diagonal has opposite angles

that sum to less than w radians. The new matrix coefficients generated by

this connectivity again ensure that the matrix is diagonally dominant. Note

that negative area triangles cannot form with an algorithm that requires that

the sum of the opposing angles is greater than zero and less than w radians.

For all simulations presented in this paper, the algorithm enforcing diagonal

dominance was used.

The reconnection algorithm is complicated by the need to uphold

conservation laws. To conserve vorticity locally, the new triangles defined

by a reconnection have velocities constrained to those which leave the

16



vorticity about each vertex unchanged. The additional requirement that the

momentum is locally conserved uniquely specifies the post-reconnection

velocities for the two new triangles. The algorithm resulting from these

constraints is reversible. Replacing the reconnected diagonal with the

original diagonal redefines the initial two triangles with their identical

original velocities.

A further complication to the reconnection algorithm arises at material

interfaces. Since triangle sides aligned along interfaces cannot be

reconnected, diagonal dominance cannot be preserved for matrix coefficients

from interface vertices by reconnection. Alternatively, a vertex may be

added at the midpoint of the interface line so that the opposing angles are

bisected by the lines drawn from the new vertex to the opposite vertices. L

This scheme assures diagonal dominance while increasing the resolution in the

neighborhood of the interface. This algorithm is exercised when vertices

close to the interface move toward the interface or when the interface

becomes severely deformed. In either case, more resolution at the interface

is generally required.

The interface problem indicates that reconnection cannot solve all the

mesh readjustment problems encountered in complex fluid flows. Two

additional "primary" procedures are required: vertex addition and deletion.

As discussed above, the addition of a vertex on an existing interface line is

accompanied by the insertion of two new lines to form two new triangles. For

a line on the boundary only one new line and triangle are added. The new

vertex may be added anywhere along any interior, interface or boundary line,

since later reconnections can be used to restore diagonal dominance. Two new

triangle velocities must be specified, and these are selected in accordance

1-
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with the same conservation laws used for the grid restructuring algorithms.

Vertices may also be added in the interior of any single triangle.

Simple algorithms for vertex addition within a triangle typically leave the

grid motion unchanged. The three new triangles are circumscribed by the

original triangle whose motion is usually constrained just as if the new

vertex was not there, since the divergences, and subsequent pressure changes,

are the same. To be effective, addition of a vertex within a triangle must

be accompanied by the reconnection of at least one of the triangle sides.

Physical variables centered at the vertex are found by interpolation just as

in the case of addition on a line.

Deletion of a vertex is performed by the inverses of these two processes.

To delete a point within the interior of a subregion, reconnections are first

made to isolate the point within a triangle. The vertex, three lines and two

triangles are deleted, and the new physical variables are determined by

averages over the old configuration. Subsequent reconnections enforce

diagonal dominance. To delete a point on an interface, the interface must

first be realigned to its new, lower resolution position either by unphysical

motion of the interface vertex or by changing the physical properties

centered at one of the triangles. The inverse process can then be used to

eliminate the vertex and redefine physical variables in accordance with the

conservation laws. It should be noted that the reconnection algorithm may

require the addition of a vertex at an interface for diagonal dominance, and

may violate a resolution requirement stipulated in another part of the set of

grid restructuring algorithms. Such conflicts can cause cycling through the

addition and deletion algorithms unless the requirements are properly

tailored to both requirements.
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General grid restructuring algorithms are built from these primary

functions, each of which is incorporated into a Fortran subroutine. The

more general routines for grid restructuring are used to provide flexibility

in setting resolution requirements and eliminating conflicts among the lower

level functions. Input to these routines is in the form of a user specified

resolution requirement limicing the maximum and minimum size for triangles

and line segments and a CFL parameter which determines the time step from the

flow speed. For the calculations presented in this paper these

specifications were global in nature, although local specifications could be

used which would be based, for example, on material type, distance from

interfaces or gradients in physical properties. Because the global

resolution was determined by a range of acceptable sizes with the maximum

near the initial values, finer resolution will persist wherever grid

restructuring has occured, as is evident in the figures below illustrating

computational grids for several different problems. Most of the finer -.

resolution arises near interfaces, where the reconnection routines force the

addition of vertices to ensure diagonal dominance and sufficient accuracy.

Local resolution specifications were used only in the grid initialization

algorithm, which is built from the same primary routines.
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NUMERICAL ALGORITHMS AND RESULTS

The basic two-dimensional hydrodynamics computer code was constructed in

such a way that the finite-difference operators for divergence, curl and

gradient exactly reflected the properties of the continuum operators. This

construction assures conservation of vorticity and mass and provides a basis

for determining the local grid connectivity. The extensions to this code

described below are all made in exactly the same spirit: the finite-

difference approximations to both physical and dynamical processes conform to

the continuum limit and conserve properly.

The expansion of the basic triangular mesh code to droplet flows was

programmed to occur in several stages. Each stage involved the development

of new algorithms for particular additions to the physics being modelled or

for necessary new numerical techniques, and the benchmarking of these new

algorithms against relevant physical calculations. The following sections

detail the progress achieved at the separate stages, the algorithms developed

and the numerical results of the benchmark calculations.

1. Incompressible, Inviscid Flow about a Droplet without Surface Tension

The first test problem for the code was a simulation of incompressible,

inviscid flow about a cylindrical droplet with a density twice that of the

background fluid. Gridding routines were written to position an arbitrarily

large drop at the center of the computational grid for variable resolution

inside and outside the droplet. Additional routines initialize the flow by a

pressure pulse at the left boundary for the first half timestep or ramp up
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the flow speed if the initial perturbation would cause adverse transients.

Divergence calculations for advancing the pressure during the ramp-up time

correct for the effect of the initial pressure pulse. For all later times

the left and right boundary condition is periodic. Rigid wall boundary

conditions are imposed at the top and bottom of the computational region for

all times. The modeled problem is therefore a row of droplets in an

impulsively started flow field. The droplet is gridded into 28 triangular

computational cells in a total system of 552 cells, as seen in the first

frame of Fig. 3. Only the triangle vertices are shown within the droplet.

Figure 3 shows the triangular mesh at several times in the calculation.

Pathlines of each of the vertices are plotted as a diagnostic, but are not

included in this Figure. Early in the calculation a recirculation zone forms

behind the droplet, compressing the droplet in the direction parallel to the

flow. Flow within the droplet is initiated by this compression in a

direction normal to the external flow. The bulges formed at the top and

bottom of the distorted droplet are pulled around the recirculation zone by

the shear flow which is at a maximum at these points. The internal droplet

flow is therefore driven by the compression set up between the front and rear

stagnation points and by the high shear flow which extends around the top and

bottom of the droplet and recirculaton zone. The interaction of the droplet

back onto the external flow occurs primarily through the enlarged cross-

sectional area presented by the droplet to the flow, which increases the size

of the recirculation zone. Eventually, as seen in Figure 3, the droplet is

squeezed into a thin layer coating the recirculation zone. The thinned film

then shatters into several smaller pieces, first at the rear of the droplet

and later in the more laminar flow toward the front of the droplet.
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Fig. 3 Frames from a computer generated movie of a simulation without
surface tension or viscosity shoving droplet deformation and shattering due
to the external flow.
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A study of the pathlines of the Lagrangian particles shows that the flow

is regular at all times despite the distorted shape of the droplet.

Subtracting off the mean flow from the calculated flow field would show a

large stationary recirculating double vortex. In a spherical geometry this

recirculation zone would form a vortex ring, and the thinned droplet coating

the ring would fragment in both the radial and azimuthal directions. The

varying density of triangle vertices arises because higher resolution is

required in the vicinity of the droplet interface.

A second calculation was performed for a 10:1 ratio of droplet to

external fluid density. The initial flow is quite similar and shows back

flow at the rear stagnation point as well as internal droplet flow normal to

the external flow. However, later droplet development is substantially

altered. The more massive droplet is less easily deformed about the

recirculation zone, and as a result the droplet grows more than the 2:1 case

in the direction normal to the external flow. Therefore a more symmetrical

front-to-back flow pattern develops. With no surface tension, there is no

restoring force and no steady-state shape. The droplet grows normal to the

flow until it is thinned sufficiently to break. Edge effects due to the

proximity of the top and bottom of the computational region are clearly

visible by the end of the calculation.

The results of both tests agree qualitatively with existing theory and

experiment. Because of the lack of surface tension, no quantitative

comparisons could be made. The gridding algorithms were found to be

sufficient to represent the droplet down to the desired resoluton as input to

the calculation. For both calculations the grid adjusted itself

automatically, i.e. without need for user intervention, to the changing
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connectivity of the shattering droplet and to the flow about the stagnation

points. The Lagrangian pathline diagnostic was found to be effective in

illustrating recirculating flow in a movie format. During the debugging

phase of these calculations it was also necessary to develop a new diagnostic

routine to zoom in and plot the grid and local field variables at points

where the code indicated problems at gridding anomalies or in convergence of

the Poisson solver.

2. Surface Tension.

The incorporation of surface tension into the code was a learning process

in finite differencing over distorted grids. Surface tension is convention-

ally cast into a finite-difference form by fitting vertices on the material

interface to some parametric function from which an estimate of local

curvature can be made. Once the curvature is known, a surface tension force

is evaluated and used to accelerate interface vertices. This scheme fails

for two reasons. First, the interface vertices are accelerated directly by

surface tension forces evaluated on the vertices. Since velocities are

centered on triangles in SPLISH, unless a secondary calculation is made, the

velocity field sees the effect of the acceleration a half-timestep later, and

as a result the pressure calculated within the droplet is inconsistent with

that found from the surface tension formula. Secondly, since the pressure

gradient forces and surface tension forces are not calculated in the same

manner, numerical error results which grows with each timestep.

Both of the problems mentioned above were eliminated by a new and unique

formulation of surface tension in which a surface tension potential is used
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to generate the forces. Since the pressure gradient forces are calculated in

the same manner and on the same grid as those derived from the surface

tension potential, exact balance can be achieved between the forces and

static pressure drops across the interface agree exactly with theory. The

surface tension force is then formulated as a gradient of a potential present

only at the surfaces. Therefore both the "surface tension potential" and the

pressure are dynamically similar, and the physical pressure drop across the

interface must exactly cancel the surface tension forces. Since the surface

tension is normal to the interface and opposes the pressure drop (Fritts, et.

al., 1982), then the VP x Vp terms which alter the vorticity are zero for the

* finite-difference algorithms.

The finite-difference algorithms for surface tension are therefore quite

simple in form. The surface tension forces are included through Laplace's

formula for the pressure jump across an interface (Landau and Lifshitz, 1975)

Pi P M (17)

where Pi is the pressure just inside the droplet at the interface, Po is

* the pressure just outside the droplet at the interface, a is the surface

tension coefficient associated with the two media which define the interface,

"* and R is the radius of curvature of the cylindrical droplet. The radius of

curvature is positive at points on the interface where the droplet surface is

convex (a spherical droplet is convex everywhere) and negative when the

droplet surface is concave. These pressure jumps are included in the Poisson

* equation for the pressure. The average pressure, (Pi + Po)/2, is

- computed at an interface vertex. From the average pressure and the pressure

jump we can compute a pressure gradient centered on triangles, within and
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without the droplet, for inclusion in the momentum equation.

The radius of curvature is computed from a parametric cubic spline

interpolant to the interface vertices. If we denote the interface

vertices by r1=(xi, y i-l,...N, with rn rl, we define a pseudo arc length

parameter, s, so that the spline knots occur at the points

s5. Si.-+ 1r1-ri i-2,.... (18)

We then generate the twice differentiable periodic spline interpolants x(s)

and y(s) from the data si, xi, Yi' i-l,...,N as prescribed by deBoor

(1978). The curvature is then given by

Ix xy" - x"I
I R I~(x, 2 + y,)3  (19)

where a prime indicates differentiation with respect to the parameter s. The

sign of R at an interface vertex, ri, is given by the sign of

[(r+l-r) x (ri-r )].z, where z is the unit vector in the z direction.

The parametric spline fit is also used for regridding. When the

regridding algorithm calls for the bisection of a triangle side which borders

the two media, a new vertex is added on the spline interpolant between the

indicated vertices rather than bisecting the straight line segment. A

straight line bisection introduces spurious interface oscillations (Foote,

1973) whereas bisecting the spline maintains the general overall shape of the

interface.
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a. Droplet Oscillations.

In order to test our algorithm for surface tension, we pet- rmed

calculations of droplets which oscillate under the effects of surface

tension. A linear theory for small amplitude oscillations on cylindrical

jets was first given by Rayleigh (1879). When a perturbation is totally in

the plane perpendicular to the axis of the cylinder, Rayleigh found the

frequency, a for the oscillations is given by

W2 (n3 - n) a (20)
Pa3

where the surface of the jet is given in polar coordinates by

r - a + ecos(n8). (21)

From Equation (20) it is clear that the lowest oscillating mode is given by

n-2. Rayleigh used Equation (20) to interpret his experiments with jets.

For large amplitude oscillations he found the experimental frequency to

diverge from that predicated by his linear theory and attributed errors to

nonlinear effects.

In the numerical calculation presented we study an n - 2 oscillation.

We have taken the parameters a - 0.0125 cm, and a - 30 dynes/cm, values which

are typical for droplet combustion problems. We used a droplet density of

2g/cm 3 and an external fluid density of Ig/cm 3. The results of a calculation

with c - 0.2a - 0.0025 cm are shown in Figure 4. The numerical oscillation

period is approximately 1.25x10" 3 s. In order to compare this result with

Rayleigh's theory, we must first correct his result for the effect of the

presence of the external fluid. Equation (20) then becomes

W2 (n 3-n) 3 (20')
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TIME-O.O 3.00 x 10 - 4  6.50 x 10 - 4  -

x
9.50 10 - 4  1.25 x 10 "11  1.00 x 10 - 11

1.90 x10-3 2.20 10 - 3i  2.510 x 10-$

Fig. 4 Computer generated frames from a Lagrangian simulation of an

oscillating droplet for two periods of an n - 2 normal mode.
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where pd is the droplet density and pe is the density of the external

fluid. With the period defined as 2w/o Equation (20') gives a period of

1.13x10- 3 s. The discrepancy between the numerical and theoretical results

can be explained by the finite grid spacing. However, given Rayleigh's

experience with large amplitude oscillations, it is reasonable to expect our

computational period to differ somewhat from that given by the linear theory.

Further calculations were performed with smaller amplitudes, e, to see if any

of the difference is attributable to nonlinear perturbation effects or if the

linear theory is directly applicable in this regime. In addition, different

density ratios were used, viz. 10:1 and 800:1, which more closely

approximated a combustion environment and which allowed the testing of the

effects of the external fluid density on the numerical convergence of the

pressure algorithm. The net result was that all the difference between

theory and the numerical result is consistent with second-order convergence

to the theoretical frequency for small perturbations and small grid size.

b. Incompressible, Inviscid Flow about a Droplet with Surface Tension

The second test of the surface tension algorithm was a recalculation of

the initial benchmark problem, but with surface tension forces turned on.

This test was necessary to check whether the code could allow for more

radical interface deformations and whether the spline fit would properly

allow the droplet to separate into smaller droplets or, alternatively, for

many smaller droplets to coalesce.
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Figure 5 shows the results of a calculation with surface tension for the

same initial conditions as used in the calculation without surface tension

(Figure 3). As in the case without surface tension, the internal droplet

flow is driven by compression parallel to the external flow and is initially

normal to the external flow. A recirculation zone is formed in the wake of

the compressed droplet and the droplet deforms into a kidney shape between

the opposing streams of the external flow and the recirculation zone. With

the relatively large surface tension forces used in this calculation, further

stretching of the droplet is curtailed. Instead of the droplet deforming

into a film around the recirculation zone, the rear of the droplet begins to

oscillate under the restoring force provided by surface tension. The

oscillation arises at the rear of the droplet at a wavelength equal to the

droplet diameter. The large deformations seen at later times have the

shortest wavelengths which can be supported by the grid resolution at those

times. These higher modes are excited numerically through wiggles induced by

the spline fit to the interface vertices and by physical oscillations induced

by the recirculating flow at the rear of the droplet. The spline routines

have been recoded for a higher order spline, but these algorithms have not

been incorporated into the main routines at the time of this report. The

front of the droplet remains smooth throughout the calculation despite the

large nonlinear oscillations occurring at the rear of the droplet, and the

general droplet shape and behavior are consistent with experiments performed

in low viscosity fluids.

The Lagrangian pathlines for the vertices again show the development of

a recirculation zone in the wake of the droplet. Initially this zone is

similar to the one in the calculation without surface tension. The primary
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Fig. 5 Frames from a simulation with surface tension but no viscosity
showing droplet deformation due to the external flow.
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effect of surface tension on the external flow is that oscillations are

superimposed on the recirculating flow at the rear of the droplet. For the

calculation shown here, this oscillation is sufficient to disrupt the reeilar

flow pattern in the droplet wake and to induce higher mode oscillations. The

effect of surface tension on the internal droplet flow appears in the

retardation and cessation of droplet thinning around the recirculation zone

and in the increased mixing due to the droplet oscillations. The internal

flow remains laminar at the front of the droplet even in the presence of the

large oscillations at the rear. The external and internal flow patterns and

droplet shape at later times agree qualitatively with experimental shapes and

flow patterns at high Reynolds number (Clift et. al., 1978). This agreement

extends to three dimensional droplets as well since experiments of bubbles

and droplets between parallel plates show results similar to experiments of

unconfined droplets and bubbles at their planes of symmetry. The calculation

does not include viscosity so that the Reynolds number is large and limited

only by an effective cell Reynolds number.
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3. Viscosity

The next step in the construction of the droplet combustion model is to

include algorithms for viscosity and compressibility. The equations of

motion of a viscous fluid in two dimensions require the additional terms

dv
**. V~v~jxxdt x

(22)

dv

dt y y

As discussed above, the formulation of the finite-difference algorithms

required velocities to be specified at triangle centroids. Gradients of

velocity components quch as those in Equation (22) are therefore difficult to

express to high order accuracy and the regions over which the approximations

must be made are irregular and costly to compute.

A numerical algorithm which is easier to implement can be derived by

expressing the change in vorticity at a grid point due to viscosity as

d v2& (23)
dt

since in two dimensions the vorticity is in the z direction. The easiest

algorithm to implement is one which introduces the necessary changes in the

triangle velocities about a vertex to satisfy Equation (23). If the choice

is made to enforce equal contributions from each of the triangles about the

vertex, then Equation (22) is satisfied. For example, consider an

unperturbed shear flow parallel to the x-axis. For this flow Wx defines
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the shear profile and Wy is zero. Therefore by Equation (22) only the x-

components of velocity in regions adjacent to the shear layer should change

and the y-components of velocity should remain unchanged. The choice of

equal triangle contributions to the change in vorticity dictated by Equation

(23) ensures that the numerical algorithm will induce change only in the x-

velocities while the changes in y-velocities will be identically zero. In

this sense, Equation (22) is used as a conservation law to ensure proper

behavior of the finite difference algorithm.

Although this algorithm was simpler to code, the specification of equal

contributions from all triangles about a vertex was difficult to enforce

except for regular grids. The determination of how the required changes in

vorticity were to be translated to velocity changes was ambiguous for

different grid geometries. The algorithm produced the correct spreading

rates for a shear profile, but only for very regular grid geometries. For an

arbitrary grid a more detailed prescription was necessary.

A discretization for which V2V is a triangle-centered quantity as in

Equation (22) remains desirable. If in the finite-difference formulation for

Equation (22) the coefficient of viscosity is centered on triangles, any

ambiguity at interfaces is avoided for stratified fluids, whereas special

algorithms would be needed for a vertex-centered coefficient of viscosity.

This placement of variables puts the viscosity on the same footing as the

density. Temporal changes in the triangle velocities are straightforward to

compute, since now

dVt
d- ~ (V2V)t ' (24)
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where the subscript "t" indicates that all quantities are triangle centered.

a. Spreading of a Shear Layer.

This algorithm was tested in a calculation of the spreading of a shear

layer of initially zero thickness given by

(x, y, t=O) - + V for y > Y

where yo is the original location of the vortex sheet. The velocity

distribution across this layer will evolve as

V (x,y, t) = Vex  (4) x (25)

and the width AY of the layer will grow as

AY ~ 8( 0) 1/2.

For the test calculation the grid was initialized to center a vortex --

sheet in a grid 16 cells wide with an initial layer width of zero. The two

[* opposing streams had initially constant velocity profiles and the evolution

of the interface between the streams was governed by the same algorithms as

*the interior of either fluid with no special interface boundary condition.

The boundary condition at the sides of the computational region were

periodic, and the top and bottom had free-slip boundary conditions. At the

end of the calculation the layer width agreed exactly with the theory and the

' layer extended over the whole mesh. The velocity profile for each stream

coincided with that given by Equation (25) to within round-off error. The y-

* components of the velocity remained zero indicating that the algorithm was

working well for the grid distortions presented by the problem.
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b. Incompressible Flow about a Droplet with Viscosity and Surface Tension.

Before the droplet runs began two modifications were made in the code.

The first was the addition of a new initial condition. All previous runs had

used an impulsively started air flow. With the addition of viscosity, this

led to large momentum transfers across the droplet interface early in the

calculation. The new initial condition specifies a steady-state flow field

derived from a streamfunction calculation. This provides a much smoother

start and a closer representation of the actual physical conditions the

droplet would see. The second modification was to the residual error

algorithm which corrects for the effects of keeping straight triangle sides.

A mistake was found which became evident only for large momentum transfers

across an interface. The error was corrected and the problem was eliminated.

The first viscous calculations were of air flow past a kerosene droplet

and included the effects of both surface tension and viscosity. The physical

parameters were appropriate for a combustor environment: 74

density of kerosene 0.82 g/cm 3

density of air .0013 g/cm 3

surface tension (STP) 30 dynes/cm

viscosity of kerosene 1.8 centipoise

viscosity of air .018 centipoise

air velocity 100 m/sec

droplet radius 125 microns.

Figure 6 follows the evolution of the internal and external flow fields for

* the calculation. At an air velocity of 100 m/sec and a droplet radius of 125
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Fig. 6 Pathlines of the fluid flow f rom a computer generated movie of
incompressible air flow past a deforming kerosene droplet. Heads of the
pathlines are the current vertex positions and the tails are made up of the
previous six positions. The flow speed is 100 in/sec. and the effects of
surface tension and viscosity are included.
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microns, the corresponding Reynolds number is roughly 1600. Boundary

conditions for the computation are periodic on the sides of the computational

region and reflective at the top and bottom. The passage of fluid through the

mesh can be tracked by the pathlines of the uppermost and lowermost vertices

next to the top and bottom of the computational region. These vertices are

slightly above and below their neighbors due to the algorithm used to "1

calculate the initial grid. Their position can be tracked through all nine

frames, showing that the fluid originally behind the droplet has progessed

through the mesh and has interacted with the face of the (next) droplet. Note

the initial frame is not at t-0.0 in order to accumulate particle pathlines

which are indicative of the originally laminar flow.

The first clear indication of the development of the recirculation region

is seen in the fourth insert where a pair of counter-rotating vortices are

evident. The recirculation zone continues to develop throughout the

calculation, although at times the vortex pair is not as evident due to the

deletion and addition of vertices which interrupts the continuity of the

pathlines. By the last insert it appears that another pair of vortices is

forming near the droplet, indicating that the original pair may be shed.

*There is now large distortion of the leading face of the droplet, and the

droplet is about to enter the wake of the preceding droplet. Distortions in

the face of the droplet are evident by at least the seventh frame, and appear

to be due to increased curvature and condensing of the streamlines in the

external flow caused by the approaching wake. The internal velocities are

small compared to the external flow rates and therefore cannot be

*. distinguished as pathlines. However, an indication of the (small) internal

recirculation may be obtain by comparing internal vertex positions at various
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timesteps. Figure 7 shows the grid at the corresponding times in the

calculation. Vertex addition has evidently occurred primarily where needed,

in the developing wake of the droplet and all along the droplet interface.

Figure 8 shows the pathlines for a simulation with identical parameters

* except for the flow speed, which is increased to 120 r/sec for a Reynolds

number of 2000. The fluid now completely passes through the mesh, with the

fluid initially near the droplet completely passing the next droplet.

Therefore the droplet has interacted with the wake of the preceding droplet

for one droplet diameter. The initial flow about the droplet is seen to be

quite similar except for a more pronounced flattening of the face of the

droplet due to the higher flow speed; The wake develops in much the same

manner, but it now interacts strongly with the flow at the forward stagnation --

point on the droplet. Oscillations in the flow due to the wake are

transmitted to the forward face of the droplet and give rise to fairly large

perturbations. As seen in Figure 9, the computational grid is in need of

* further refinement at this time because the perturbations cannot be resolved

by the length scales originally chosen for the run. One of the crests of the

surface wave is gridded by a single triangle, a situation which allows no

- communication of that surface fluid with the interior of the droplet. In

order to continue the simulation better resolution must be obtained about the

droplet surface. A new algorithm has been developed to permit higher

- resolution near points of large curvature of material interfaces, but the

* algorithm was not implemented at the time of these calculations.
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Fig. 7 Frames shoving the triangular grid at the same times as shown for
the pathlines in Figure 6.
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Fig. 8 Pathlines for the fluid flow when the flow speed is 120 rn/sec. All
other parameters for the calculation are identical with those for the
simulation shown in Figure 6.
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Fig. 9 The restructuring triangular grid at the times corresponding to the
frames in Figure 8.
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FUTURE DEVELOPMENTS

The next step in the construction of the droplet combustion model is to

include an algorithm for compressibility. The addition of compressibility

will occur in two ways depending on the characteristic flow velocities in the

calculations. When flow speeds are slow with respect to the sound speed, we

do not want the timestep to be limited by the Courant condition. In such

cases the sound waves can be filtered out of the solution by altering the

pressure field to account for local divergences on the time scale of the

fluid flow (Jones and Boris, 1979). These divergences, which arise for

example, from heat release, are introduced into the pressure Poisson Equation

in a manner similar to that for incompressible flow. However, there is a re-

striction that the relaxation times occur at the proper time scale. For the

triangular mesh, such additions should be easy to implement since a

divergence correction term is already used to account for the effects of

maintaining straight triangle sides.

In the case for which sound waves must be included, an energy evolution

equation and an equation of state must be included in the finite difference

algorithms as well. The algorithm which will be used for the equation of

state expresses the density as a function of the pressure and energy. Given

a new internal energy derived from the energy evolution equation and an

" approximation to the pressure, density is calculated from the equation of

, state. This equation of state density is compared to the density derived

* from the fluid dynamics and the difference is iterated to zero. This

solution is the inverse of the usual algorithms for the equation of state

which express pressure as a function of density and energy. The method has

43



been tested extensively for a one-dimensional restructuring mesh in the code

ADINC (Boris, 1979; Fritts et al., 1981). The technique works well in one

dimension and exhibits diminished finite difference error propagation due to

the fact that numerical errors in pressure result in small density

fluctuations. In the usual technique, small density errors can give rise to

large pressure fluctuations, and hence a larger error propagation.

An energy evolution equation,

dE
d- . _-E 7 • -• (P ) + 7 - XVT, (26)

will also be needed to account for the effects of thermal conductivity,

represented by the last term in Eq.(26). If both energy and temperature are

carried as vertex centered quantities, then there are no new techniques

required for the first and third terms, since the finite-difference

approximations for similar terms are well tested. The center term must be

carried as an average, since pressures are vertex centered while velocities

are triangle centered. The incorporation of reactions is rather

straightforward and will follow previously tested techniques given by Oran

and Boris (1981).

The three-dimensional analogue of a triangular grid is a tetrahedral grid

in which surfaces are tessalated by triangles. Although the addition of one

more dimension introduces new complications in the reconnection algorithms,

much of what was learned from the two-dimensional case carries over intact

into three dimensions. Vertices can still be deleted by successive

reconnections to isolate a vertex within a single tetrahedron. At that

point, the vertex and its four lines can be eliminated from the grid.

Vertices can be added within tetrahedra, in the plane of a triangle and on

lines without major modification of the techniques used in two dimensions.
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The conservation criteria used for reconnecting, adding and deleting cells in

three dimensions usually involves either extending integrals to one higher

dimension, or measuring an angle between planes rather than lines.

Similarly, the hydrodynamics finite-difference algorithms are logical

extensions of the two-dimensional algorithms. The use of primitive variables

allows a simple extension for the vorticity integrals, and the solution of

Poisson's Equation still requires just one matrix inversion.
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CONCLUSION

In this report we have described the basic algorithms in the two-

dimensional Lagrangian, incompressible Cartesian code, SPLISH. A main

advantage of the Lagrangian technique is the general property of the

restructuring triangular mesh, which allows reconnection of vertices without

adding numerical diffusion. This technique is accurate at material

interfaces even though the interfaces undergo convolutions and may evolve

into multi-connected surfaces. Because of the potential advantages of such a

technique to combustion problems, we have begun the process of converting the

code for the study of flows in and around burning fuel droplets.

We have described and presented benchmarks for two new algorithms which

have been added to the basic fluid dynamics code: one for surface tension and

one for viscosity. Surface tension is included as a jump in pressure across

an interface by casting the surface tension forces in the form of a gradient

of a potential. The algorithm has been benchmarked by comparing numerical

solutions of the oscillations of an n = 2 normal mode to the results of an

analytic solution. The difference between the exact and numerical solution

becomes smaller as grid resolution is improved. The viscosity algorithm is

presented and tested by calculating the spreading of a viscous shear layer

and comparing this to the analytic solution. Here the analytic and numerical

solutions are virtually identical.

Finally, we have discussed initial calculations of the behavior of

dense fuel droplets in a flowing gas. Droplet flows with and without surface

tension and with and without viscosity are discussed. Calculations of

kerosene droplets in air are presented. These show both internal and
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external droplet flows as well as distortion of the droplet due to the

relative flow. Also, we see how vortex pairs develop and are shed behind the

droplet. Droplet-droplet interactions occur when the distorted flow induced

from one droplet reaches another. The results of the calculations are

illustrated by sequences of frames from a computer generated movie of fluid

particle positions.

The restructuring mesh has been shown to be capable of accurately

tracking interfaces despite transition to multiply connected flows. As a

result calculations of distorting and shattering droplets can now be

performed entirely from first principles, without recourse to approximations

or phenomenological models. The numerical technique is appropriate to the

tracking of flame fronts as well. There are a number of future directions

that can be taken in the development of the model. Algorithms which make the

code compressible have been developed and must be implemented. When this is

done, we can consider effects such as thermal conduction and chemical

reactions. Implementation of these algorithms in the cylindrical version of

this code instead of the currently used cartesian version would allow the

study of a round instead of cylindrical droplets. Some of the basic

algorithms need to extend the code to three-dimensions have been worked out

with tetrahedra replacing triangles. However, these need considerable

development before they can be used here.
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